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ABSTRACT
Memory corruption vulnerabilities that lead to control-flow
hijacking attacks are a common problem for binary executa-
bles and such attacks are known for more than two decades.
Over the last few years, especially code reuse attacks at-
tracted a lot of attention. In such attacks, an adversary
does not need to inject her own code during the exploitation
phase, but she reuses existing code fragments (so called gad-
gets) to build a code chain that performs malicious compu-
tations on her behalf. Return-oriented programming (ROP)
is a well-known technique that bypasses many existing de-
fenses. Surprisingly, code reuse attacks are also a viable
attack vector against web applications.

In this paper, we study code reuse attacks in the con-
text of PHP-based web applications. We analyze how PHP
object injection (POI) vulnerabilities can be exploited via
property-oriented programming (POP) and perform a sys-
tematic analysis of available gadgets in common PHP appli-
cations. Furthermore, we introduce an automated approach
to statically detect POI vulnerabilities in object-oriented
PHP code. Our approach is also capable of generating POP
chains in an automated way. We implemented a prototype of
the proposed approach and evaluated it with 10 well-known
applications. Overall, we detected 30 new POI vulnerabili-
ties and 28 new gadget chains.

Categories and Subject Descriptors
F.3.2 [Semantics of Programming Languages]: Pro-
gram analysis

General Terms
Security
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1. INTRODUCTION
Memory corruption vulnerabilities, such as buffer over-

flows, format string bugs, and dangling pointers, are known
for a long time and still constitute an intractable class of pro-
gramming mistakes [37, 41]. While defense techniques such
as address space layout randomization (ASLR) and data ex-
ecution prevention (DEP) are widely deployed to hamper
the exploitation of such vulnerabilities, an adversary can
still utilize different techniques to circumvent such defenses.
Especially code reuse techniques, such as for example return-
to-libc [32], return-oriented programming (ROP) [27], and
jump-oriented programming (JOP) [3], have received a lot of
attention since they are able to bypass several kinds of se-
curity protections. With ROP and JOP, an attacker reuses
available code fragments in memory (so called gadgets) and
joins them together to construct the attack payload piece by
piece (so called gadget chains) in scenarios where she cannot
inject her own code.

In 2009, Esser showed that code reuse attacks are also
viable in PHP-based web applications [9, 10]. More specifi-
cally, he introduced a similar exploitation approach for ob-
ject injection vulnerabilities in web applications which abuses
the ability of an attacker to arbitrarily modify the proper-
ties of an object that is injected into a given web applica-
tion. Thus, the data and control flow of the application can
be manipulated and he coined the term Property-Oriented
Programming (POP). In the past five years, many object in-
jection vulnerabilities were detected in popular open-source
PHP software such as Wordpress, Joomla, and Piwik. They
can lead to critical security vulnerabilities, such as remote
code execution, and affect a majority of web servers since
PHP is the most popular scripting language on the Web
with a market share of more than 80% [43].

Similar to well-understood injection vulnerabilities such as
cross-site scripting (XSS) [19] and SQL injection (SQLi) [13],
PHP object injection (POI) vulnerabilities in a given ap-
plication can be detected with the help of taint analysis.
Broadly speaking, a vulnerability report is generated when
untrusted user input reaches a security-sensitive sink [28].
Several analysis frameworks to detect different kinds of injec-
tion vulnerabilities were proposed in the last years [1,18,44,
46]. Recently, we presented a static code analysis approach
that detects 20 types of injection vulnerabilities, including
POI vulnerabilities [6]. However, no existing analysis tool
is capable of deciding whether a given POI vulnerability
is actually exploitable or not. This is a challenging analy-
sis task since we need to identify a combination of gadgets
in the code that allows an attacker to trigger another vul-



nerability by manipulating the control and data flow. Fur-
thermore, complex object-oriented programming (OOP) fea-
tures of PHP require a comprehensive analysis and—to the
best of our knowledge—no existing static analysis tool for
PHP-based web applications supports OOP analysis.

In this paper, we tackle these challenges and present the
first automated approach to detect POP gadget chains to
confirm POI vulnerabilities. By performing static code anal-
ysis that supports the analysis of PHP’s OOP features, we
are able to collect sensitive sinks in the application’s code
that can be reached after a PHP object was injected. More
specifically, we propose an inter-procedural, field-sensitive,
and object-sensitive data flow analysis that we can leverage
to analyze the relevant OOP features. By analyzing the re-
sulting path, we can also construct an actual attack payload
for each detected gadget chain. The resulting chains allow us
to verify the ability to exploit a potential POI vulnerability.
We have implemented a prototype of the proposed analysis
approach and tested it with 10 real-world applications vul-
nerable to PHP object injection. Besides confirming most
of the previously reported POI in these applications in an
automated way, our prototype reported several previously
unknown POI vulnerabilities and gadget chains with only
few false positives.

In summary, we make the following three contributions:

• We perform a systematic analysis of PHP object injec-
tion (POI) vulnerabilities and demonstrate how such
vulnerabilities can be exploited via Property-Oriented
Programming (POP), a variant of code reuse attacks
against web applications.

• We are the first to propose an automated approach to
statically detect POI vulnerabilities in object-oriented
PHP code and to automatically verify the severity by
constructing exploitable gadget chains.

• We evaluated our approach for 10 well-known applica-
tions recently affected by a PHP object injection vul-
nerability. As a result, we detected 30 new POI vul-
nerabilities and 28 new gadget chains.

2. PHP OBJECT INJECTION
A PHP Object Injection (POI) vulnerability occurs when

unsanitized user input is used during the deserialization of
data in a given application. PHP features so called serializa-
tion and deserialization functions that allow a programmer
to store data of any type in an unified string format. This
format makes it easy to transfer combined data structures
and is often misused to create multidimensional cookies and
similar data structures.

Since PHP allows deserialization of arbitrary objects, an
attacker might be able to inject a specially prepared ob-
ject with an arbitrary set of properties into the application’s
scope. Depending on the context, the attacker can trigger
so called magic methods [39] and this potentially leads to
a variety of vulnerabilities. Note that the type of vulnera-
bility is highly dependent on the classes’ implementation of
their magic methods. Each magic method might call another
(potentially security-relevant) PHP function (e.g., eval() or
fwrite()) with attacker-controlled member variables as ar-
guments that can lead to remote code execution, file inclu-
sion, SQL injection, and any other kind of vulnerabilities.

We now introduce the concepts of magic methods (Sec-
tion 2.1) and serialization (Section 2.2) in PHP. Both PHP
features form the basis to exploit a POI vulnerability by
utilizing Property Oriented Programming. This exploit tech-
nique combines both features and is described in Section 2.3.
It is one of the most sophisticated attack techniques against
PHP applications since it requires reusing already existing
code in the application’s classes.

2.1 Magic Methods in PHP
The concept of object-oriented programming (OOP) was

considerably enhanced in version 5 of PHP and since then in-
cludes destructors, exceptions, interfaces, and further object-
oriented concepts. OOP allows to logically encapsulate data
and functionality in objects, while their implementation re-
side in the class definition. Each class can be initialized into
an object that contains properties and methods that are de-
fined in their designated class. These properties are called
attributes (or fields), while methods describe a function ac-
cessible to an object.

Magic methods play an important role when exploiting
POI vulnerabilities since they are automatically executed
upon specific events. As we will see later on, they can be
used to start a POP gadget chain. The following magic
methods fulfill a special purpose and can be defined once
per class:

• __construct(): This magic method implements the
constructor inside a class that is called whenever a new
object of that class is created. It is often used to initial-
ize the object’s attributes or to run other code before
the object can actually be used.

• __destruct(): In contrast to the __construct() func-
tion, __destruct() is executed whenever the script
terminates or the reference count of an object reaches
zero. It is often used to invoke code that cleans up
used data or terminates connections that were possi-
bly established after the object was created.

• __call(): This function is always invoked when an
inaccessible method of an object is called (e. g., $obj
->invalid_method()). It is handy in terms of error
handling, since accessing invalid methods usually re-
sults in a fatal error and termination of the PHP ap-
plication.

• __callStatic(): Similar to __call(), this magic func-
tion catches inaccessible calls in static context (e. g.,
obj::invalid_method()).

• __get($name): The method __get() is automatically
called when trying to read private, protected, or non-
existent properties of an object. Since private and
protected properties cannot be directly accessed from
outside the object, the parameter $name is used to ref-
erence the desired property.

• __set($name, $value): The method __set() is au-
tomatically called when trying to write to private or
protected properties of an object. Because this is pro-
hibited, this function allows the application to handle
assignments such as $obj->private = ’value’.

• __isset(): Similar to previously mentioned methods,
this function is called whenever isset() or empty() is
used on a non-existent property.

• __unset(): Every time unset() is used on non-existent
properties, this function is called with an argument



that describes the name of the variable that the appli-
cation wants to unset.

• __sleep(): This magic method is triggered whenever
an object is serialized. It gives the programmer the
ability to let the object run any sort of cleanup-code
before serialization.

• __wakeup(): In contrast to __sleep(), __wakeup() is
called directly after deserialization. It is often used to
reinitialize the application’s state that was lost during
serialization, for example the connection to a database.

• __toString(): Whenever an object is used in a string
context (e.g., when it is concatenated with a string),
this method is invoked to return a string representation
of the object.

• __invoke(): This method is called whenever an object
is used as a dynamic function name (e. g., $obj()).

• __set_state($properties): Within an application,
the function var_export() is used in order to display
any sort of data as parsable PHP code. If an object is
used as argument, the method __set_state() is called
to define which properties are exported.

• __clone() This function is called when an object is
cloned by the clone operator. It is equivalent to copy-
constructors known in other languages. By implement-
ing this method in a class, the programmer can specify
what exactly should happen during cloning.

2.2 Serialization in PHP
PHP supports serialization and deserialization of all de-

fined data types—including objects. Serialization is realized
through the built-in function serialize() which accepts a
single parameter and returns a serialized string that can be
fed into unserialize() in order to retrieve said data again.
This string is represented in an unified format which con-
sists of several identifiers that specify the serialized data
type. These identifiers have the following purpose:

• a: – defines that the passed parameter is an array. a:

is always followed by a numerical value that specifies
the size of the array.

• i: – simply defines a numerical value, e. g., i:8;.

• b: – specifies a boolean value, e. g., b:0; or b:1;.

• s: – defines a constant string. s: is always followed
by a numerical value which declares the length of the
string, e. g., s:4:"test";.

• S: – defines a constant string in encoded format.

• O: – represents an object in its serialized form. O:

is followed by the length of the class name and by
the name itself, e. g., O:1:"A". It is then followed by
the number of properties and the defined properties
themselves. Note that a property can also consist of
another object with its defined properties.

Further identifiers, such as r: and R:, exist that can be
used to store references, but they are out of scope for our
purpose. An example of the functionality behind PHP’s
serialization is given in the Listing 1. Line 2 serializes the
array defined in line 1 and it therefore returns the string in
line 4 which is then fed into unserialize() again. Line 6
then shows that the deserialization of the array returns the
same values as they were previously defined.

1 $arr = array(1 => 2, 3 => "string");
2 $serialized = serialize($arr);
3 print $serialized . "\n";
4 // a:2:{i:1;i:2;i:3;s:6:"string";}
5 var_export(unserialize($serialized));
6 // array ( 1 => 2, 3 => ’string’ )

Listing 1: Exemplary serialization of an array.

2.3 Property Oriented Programming
There are two preconditions that a PHP application needs

to meet so that POP can be used to exploit a POI vulner-
ability. First, at least one magic method which gets called
during the application’s runtime needs to be defined in an
object’s class that the attacker wants to inject. Second, the
chosen class needs to be loaded within the scope of the vul-
nerable unserialize() call the attacker passes her input to.

Each magic method can either be context-dependent or
context-independent. Context-dependent means that an ob-
ject has to be used in a certain way so that a magic method
gets executed (see Section 2.1). Other magic methods are
called automatically during the application’s lifetime: the
method __wakeup() and __destruct() is context-indepen-
dent since __wakeup() is always called directly after dese-
rialization of an object and __destruct() is always called
once the object is destroyed. Both methods might contain
suspicious code while using properties that can be arbitrarily
defined when the object is deserialized.

Passing user input into the unserialize() function en-
ables an attacker to inject specially crafted objects with cho-
sen properties that will be used inside the magic method.
However, when only context-dependent methods such as
__toString() or __call() exist, the attacker has to choose
a code path where the deserialized object is used accordingly
to trigger the magic method. These code paths are often a
lot more scarce and thus context-independent methods are
a better choice for attacks.

Each magic method might also call different methods of
other objects which are linked as members to the first ob-
ject. In this scenario, it makes sense to check all other object
methods, which can also be denoted as gadgets, for danger-
ous sinks that can all be joined to a complete injectable POP
chain. Listing 2 shows an excerpt of a vulnerable application
where three gadgets are combined to achieve an arbitrary file
deletion.

1 class File {
2 public function shutdown() {
3 $this->close();
4 }
5 public function close() {
6 fclose($this->h); // harmless
7 }
8 }
9 class TempFile extends File {

10 public function close() {
11 unlink(’/var/www/tmp/logs/’ . $this->filename); // !!
12 }
13 }
14 class Database {
15 public function __destruct() {
16 $this->handle->shutdown();
17 }
18 }
19 $data = unserialize($_COOKIE[’data’]);
20 // O:8:"Database":1:{s:6:"handle";
21 // O:8:"TempFile":1:{s:8:"filename";s:15:"../../.htaccess";}}

Listing 2: Exploitation of a POI vulnerability.



The POI vulnerability occurs in line 19, where user in-
put is deserialized. Note that an application often does not
intend to deserialize objects but rather arrays. By forging
a cookie with the content seen in lines 20–21, the attacker
injects a Database object with the $handle-property set to
a TempFile object. Its $filename property is then set to the
../../.htaccess file that the attacker attempts to delete.

When the application terminates, the injected Database

object will automatically execute its destructor. The de-
structor will then use the $handle-property to execute its
shutdown() function. Because the attacker loaded the class
TempFile into this property, the function shutdown() of
TempFile is triggered. It inherits this method from the File

class. Next, the method shutdown() invokes the method
close(). Although this method is harmless in the File

class, it is overwritten in the class TempFile with a harmful
method that deletes the specified .htaccess file.

Note that an initial gadget (in this case Database’s de-
structor) is required in order to start having an execution
flow of already existing code, defined in the object’s meth-
ods. For every set of objects, multiple variations of gadgets
can be combined, each leading to another class of vulner-
ability in the end. As manually checking the application’s
source for useful gadgets is cumbersome and time consum-
ing, an automated approach is needed.

3. STATIC POP CHAIN DETECTION
In order to detect POI vulnerabilities and POP gadget

chains in modern applications, an efficient analysis of object-
oriented code is required—a feature missing in existing anal-
ysis frameworks [1,6,7,18,44,46]. In the following, we intro-
duce our approach to address this challenge. In Section 3.1,
we first provide a general overview of the taint analysis ap-
proach. Afterwards, we review the basic analysis tasks and
data flow analysis of procedural PHP code we utilize. We
introduce our novel analysis approach for inter-procedural,
field-sensitive and object-sensitive data flow analysis in Sec-
tion 3.3. Based upon this method, we can analyze OOP code
for POI vulnerabilities and generate POP gadget chains effi-
ciently (see Section 3.5). We highlight difficulties in the anal-
ysis of OOP code and limitations of our approach through-
out the section and present small code samples for better
understanding.

3.1 High-Level Overview of Taint Analysis
As a basic analysis task, we need to perform a taint anal-

ysis capable of inspecting a large number of sensitive sinks,
affected parameters, and unsanitized sources. Furthermore,
we must precisely analyze built-in functions in order to sim-
ulate their actions regarding data flow and data sanitization.
To this end, we leverage ideas of static code analysis frame-
works based on block, function, and file summaries [6, 46]
and extend them to our needs.

When analyzing a given application, each PHP file of
the application is transformed into an Abstract Syntax Tree
(AST). In an initial phase, each AST is analyzed for dec-
larations of functions and classes. The sub trees of these
units are extracted from the AST and the remaining tree
is assigned to each file’s name. Next, each file’s AST is
transformed into a Control Flow Graph (CFG). During this
transformation, the AST is split into linked basic blocks that
represent the control flow of the program. Whenever a new
basic block is connected to the current basic block, the cur-

rent basic block is simulated. During this process, the data
flow of the current basic block is inferred from its AST,
by using an abstract representation of data (details are ex-
plained in Section 3.2). The result of the data flow analysis
is stored in a block summary.

If a sensitive sink occurs during block simulation, the af-
fected argument is analyzed with backwards-directed taint
analysis [6,44]. Similar to our data flow analysis, the origin
of the argument is recursively retrieved from the summary
of previously connected blocks. If it originates from unsani-
tized user input, we report a new vulnerability according to
the sink’s type.

If a user-defined function is called within a basic block,
the current simulation is halted and the AST of the called
function is transformed into a CFG with the same approach.
If a taint analysis during this transformation hits a param-
eter or global variable of the currently analyzed function,
the affected parameter or variable is stored in the function
summary. Once the CFG transformation is completed, all
return statements are analyzed in a similar way to deter-
mine the returned data of the function. The information is
added to the function’s summary and the simulation of the
callee’s context is continued. For every further call of the
same function, the function summary is used. Global vari-
ables are exported and the arguments of sensitive parame-
ters are analyzed context-sensitively. The function summary
will play an important role during POP chain generation (see
Section 3.5).

The analysis ends when the ASTs of all files are trans-
formed to CFGs. For each file, a file summary is created
similar to a function summary for cases in which the file is
included multiple times. This analysis approach based on
summaries is efficient because every code block is analyzed
only once. A remaining challenge is to combine it with an
analysis of the highly context-sensitive data flow through
objects and methods in object-oriented code.

3.2 Data Flow Analysis
We now present our method of summarizing data flow

within a basic block [6,46]. Based on a basic block’s AST, we
analyze all data assignments to memory locations of the form
loc := <assigned data>. Other forms of data assignments
are handled as well, but left aside for brevity reasons. The
assigned data is transformed into the following data symbols
which are an abstract representation of data and locations:

• Value represents a string or an integer value.

• Variable represents a variable $x by its name x.

• ArrayFetch represents the access of an array $x[y]

by its name x and the dimension y. Multiple dimen-
sions are possible, such as for example $x[y][z].

Once the assigned data is transformed into data symbols,
its memory location is indexed in the block summary for
efficient lookups. In procedural PHP code, the assigned lo-
cation loc is either a variable $x or an array dimension $x[y].
Assigned data to a variable can be indexed in the block sum-
mary by the variable’s name. Previously assigned data is
overwritten. The assignment to an array dimension requires
a more complex representation and this problem is solved
by the wrapper symbol ArrayWrite. It stores assigned
data in a tree graph, whereas the tree’s edges represent the
dimensions and the leaves represent the assigned data [18].



Dimension and data are both stored as data symbols. The
tree structure allows efficient access to the data by provid-
ing one or multiple dimension(s) which are compared to the
edges. The ArrayWrite symbol acts as a data wrapper
and is indexed in the block summary by the array’s name.
Further assignments to the same index extend its tree.

To summarize not only the data assignment but also the
data flow of one basic block, the interaction between data
assignments is evaluated based up on the current block’s
summary. For this purpose, the name of an assigned data
symbol is looked up in the current summaries’ index list to
see if it can be resolved by previous definitions in the same
basic block.

A found Variable symbol is simply replaced with the
symbol from the summary. An ArrayFetch symbol has to
carry its array dimension to the resolved symbol. A resolved
Variable symbol will turn into an ArrayFetch symbol
with the carried dimension. The dimension of a resolved
ArrayFetch symbol is extended by the carried dimension.
In case the resolved symbol is an ArrayWrite, the symbol
mapped to the carried dimension is fetched from the tree.

A return value of a user-defined function is resolved from
the function summary. As described in the previous section,
it summarizes the data flow of the function’s basic blocks.
The return value is a data symbol. For simplicity, we ignore
the fact that a function can return multiple different data
symbols.

Based on these basic blocks’ summaries, efficient data flow
and taint analysis across linked blocks is possible without
requiring the re-evaluating of the blocks’ operations.

3.3 Our Approach to OOP Analysis
In this section, we introduce our approach for statically

analyzing relevant OOP features for POP detection. First,
our prototype gathers information about the object-oriented
code (see Section 3.3.1). Then, the allocation of objects (see
Section 3.3.2) and the access to object properties (see Sec-
tion 3.3.3) is included into the data flow analysis. A chal-
lenge is to maintain the efficient concept of data flow sum-
maries: with OOP, the context of data handling moves away
from a single basic block to a pervasive object that is used
in different blocks and functions. We approach this chal-
lenge by assisting the backwards-directed data flow analysis
with a forwards-directed, object-oriented analysis. For this
purpose, new data symbols are added. Finally, our inter-
procedural analysis for methods utilizes a class hierarchy
and method fingerprints to handle calls in a context-sensitive
manner (see Section 3.3.4).

3.3.1 Initialization
During the initial analysis phase, we extract class defini-

tions from the ASTs. They are stored as part of the analysis
process. For static classes, we collect predefined properties
and class constants that are transformed to data symbols.
During data flow analysis, access to this static content is
inferred instantly. Furthermore, we build a class hierar-
chy [8,36] based on the inheritance of each class (e. g., class
A extends B). To answer the questions who extends whom
and who is extended by whom, it is built in both directions.
All defined methods are stored in the analysis environment
as user-defined functions, but are linked to their originating
class. Additionally, we extract type information of parame-
ters whenever possible.

3.3.2 Object-sensitive Analysis
After initialization, our prototype starts to analyze the

data flow of basic blocks as described in Section 3.2. We
introduce the new data symbol Object whenever a new
object is constructed by the keyword new. This data symbol
is defined by the instantiated class’ name and its properties.
The properties are represented by a hash map that references
a property name to a data symbol. By default, the map of
properties in each Object symbol is empty.

When a new object is created, its constructor is analyzed.
A constructor is either the __construct() method of the
class or a method having the instantiated class’ name. Our
inter-procedural analyses ensures that all data assigned to
properties within the constructor is assigned to the new Ob-
ject symbol. The details are explained in Section 3.3.4.

Object Propagation.
Then, the created object is assigned to its memory lo-

cation and indexed in the block summary as described in
Section 3.2. As shown in the next sections, certain anal-
ysis steps require the knowledge of all present objects and
their corresponding class. Thus, at the end of the simula-
tion of one basic block, all the indexed Object symbols are
propagated to the next basic block into an object cache (il-
lustrated in Figure 1, dotted arrow). While our prototype is
aware of multiple different objects per code path, we assume
for simplicity that no cache index collides.

Moreover, we extract type information from type checks
(e.g., $o instanceof MyClass) to determine missing class
information. The class name is updated in the object cache
or a dummy object is created if no related object is found.

The object cache is extended by each basic block when
new objects are invoked and all objects are propagated until
the end of the CFG is reached. This way, each basic block
has access to previously invoked objects within its CFG. If
the CFG belongs to the main code of a file, the lifetime
of all objects passes over. At this point, the object cache
is emptied and the __destruct() method of each different
instantiated class is analyzed. The inter-procedural propa-
gation of objects is explained in Section 3.3.4.

Object-sensitive Magic Methods.
Based on the object cache, special operations on loca-

tions pointing to objects are detected and the correspond-
ing magic methods are analyzed (refer to Section 2.1). If the
built-in functions var_export() or serialize() reference a
memory location that points to an Object symbol, the cor-
responding magic methods __set_state() or __sleep() of
the object’s class are analyzed (if available). Similarly, the
clone operator invokes analysis of the method __clone()

and an implicit or explicit typecast to String invokes analy-
sis of the method __toString(). If an object is used within
a dynamic function call, such as $object(), the method
__invoke() of the object’s class is analyzed.

3.3.3 Field-sensitive Analysis
With the knowledge about present objects, our prototype

can handle the access to properties. We model writes and
reads to properties of objects (i.e., $o->p) in a similar way
to the access of arrays. The challenge is to maintain object-
sensitivity [30]. We refer to the accessed object $obj as the
receiving object, or in short, receiver [25].



1 $text = ’test’;
2 $obj = new MyClass;
3 if(...) {
4 $obj->data = $text;
5 }
6 echo $obj->data;

text: ‘test‘
obj: MyClass{}

obj: MyClass{
           data:$text}

obj: MyClass{
           data:‘test‘}

Figure 1: The code on the left creates a new object and
assigns data to a property. The corresponding control
flow graph is illustrated on the right. The created object
obj is propagated forward throughout the CFG (dotted ar-
row). Assigned data to an object’s property is resolved by
backwards-directed data flow analysis (dashed arrow).

Property Writes.
A property p of an object $o is written to if the location

loc of the assignment loc := <assigned data> is a property
access (i.e., $o->p). We then first try to resolve the assigned
data by backwards-directed data flow analysis of all previ-
ously linked blocks’ summaries (recall Section 3.2).

If the receiver’s name $o is found in the object cache of the
current basic block, then the assigned data’s symbol is added
to the property hash map of object $o in the object cache
with index p. In case an array dimension of a property is
accessed (i.e., $o->p[d]), the assigned data is wrapped into
an ArrayWrite symbol. An example is given in Figure 1.
Here, the variable $text is resolved in line 4 and its value
test is assigned to the object’s property.

However, during intra-procedural analysis, the object cache
is not always complete. For example, when $o is a parameter
or a global variable of the current function (see Listing 3), or
the receiver’s name is the reserved variable $this that refers
to the current object of the called method, the receiver is
unknown. In this case, we use the wrapper symbol Proper-
tyWrite to save the information about the receiver’s name,
property dimension, and assigned data symbol. All Prop-
ertyWrite symbols of one basic block are stored in its prop-
write cache. This cache is propagated through all upcoming
basic blocks, similar to the object cache. The details on how
the property writes are assigned to the correct receiver dur-
ing inter-procedural analysis are explained in Section 3.3.4.

Furthermore, we handle writes to static properties. Sim-
ilar to the access of non-static properties, the receiver class
can be related to the current callee’s class (e. g., self::$p
or parent::$p), or to a secondary class (e.g., Class::$p).
In both cases, the target class name is determined from the
class hierarchy and the assigned data is stored in the proto-
type’s environment for later access.

Property Access.
We introduce the data symbol PropertyFetch to model

the access of a property. It extends the ArrayFetch sym-
bol with a property dimension. This way, a PropertyFetch
symbol is also capable of having an array dimension. The
name associated to the symbol is the name of the receiv-
ing object. For example, the code $v = $o->p[a] assigns
a PropertyFetch symbol with the name o, the property
dimension p, and the array dimension a to the location v.
During data flow analysis, we try to resolve this symbol.

The PropertyFetch symbol can be resolved from the
block summary if the receiver name o is found in the object
cache. First, the property dimension p is fetched from the
hash map and then the array dimension a is carried to the

resolved symbol. If the receiver name o is indexed in the
data flow summary, the receiver’s symbol is fetched and the
object’s property dimension p is carried to it. In this pro-
cess, a Variabe symbol is inferred into a PropertyFetch
symbol with a property dimension p. An ArrayFetch sym-
bol is inferred similarly, but carries its array dimension to
the PropertyFetch symbol. If a PropertyFetch symbol
is resolved from the block summary into another Proper-
tyFetch symbol, the property dimensions are added. Fi-
nally, if the PropertyFetch symbol was not inferred from
the block summary or the object cache, it is looked up in
the propwrite cache. Otherwise the PropertyFetch sym-
bol remains unresolved.

Field-sensitive Magic Methods.
We also invoke analysis of magic methods for certain oper-

ations on PropertyFetch symbols. However, this is only
possible when the class name of the receiver is resolved from
the object cache. Then, if the built-in function isset() or
unset() references to an inaccessible property (determined
by the class definition), the magic method __isset() or
__unset() of the receiver’s class is analyzed. Furthermore,
if the property dimension of a property read or write is not
defined in the receiver’s class, the magic method __get() or
__set() is analyzed. When the receiver’s class name can-
not be resolved, no further analysis invoked. Note that in
case of a POI vulnerability, an object of an arbitrary class
is present so that field-sensitive magic methods are still sup-
ported for POP chain generation by considering all available
classes (for details refer to Section 3.5).

3.3.4 Inter-procedural Analysis
Our prototype handles calls to methods in a way simi-

lar to user-defined functions. However, because a method
name can be defined in multiple classes, our prototype has
to determine the receiver’s class to invoke the analysis of the
correct method [30].

Challenge: Receiver Analysis.
A call to a static method is easily mapped to the correct

class by its specified name (e. g., Class::method()). In case
the static keywords self::method() or parent::method()

are used, the class name can be resolved from the class hier-
archy of the current method’s class [8,36]. The same applies
if the reserved variable $this is used as receiver.

For all other non-static method calls, such as $o->method(),
the class name has to be inferred from the receiver variable
$o. If the receiver’s name is found in the current block’s
object cache, the class name is extracted from the cached
Object symbol. Note that the object cache contains only
objects that were created in the current CFG or imported
into the current CFG as return value of a function. However,
as shown in Listing 3, if the receiver is passed as an argument
($obj1) or global variable ($obj2) to the currently analyzed
method, no information about the receiver is available. The
callee’s context is only applied to the function summary,
while our intra-procedural analysis is context-insensitive.

1 public function handler($obj1) {
2 $obj1->method1(1, 2);
3 global $obj2;
4 $obj2->method2(1, 2, 3);
5 }

Listing 3: Receiver $obj1 and $obj2 are unknown.



We approach the problem for $obj1 by searching for all
available methods named method1() in all class definitions.
If the name is unique, the corresponding method is invoked.
Otherwise, we compare the number of arguments (here: two)
to the number of parameters specified in the method dec-
larations. Then, we invoke the analysis for all matching
candidates and combine their function summaries to one
summary. While this approach can potentially lead to an
over-approximation, it is likely that methods, such as the
method handler() in Listing 3, are intended to call differ-
ent methods on different objects.

For $obj2 we take a different approach. In our initial
setup phase, we index the name of all global variables within
all application’s functions and methods identified by the
global keyword or $GLOBALS variable. If a new object is as-
signed to a location having one of these indexed names, the
object’s class name is referenced to the index. During intra-
procedural analysis, the class name can then be retrieved for
global variables. In case of dynamic global variables we fall
back to the approach as described for $obj1.

Invocation-sensitive Magic Methods.
For static method calls we check the accessibility of the

method regarding to the receiver’s class name with the help
of our class hierarchy. We invoke any defined __static-

Call() method of that class if the method is not accessible.
The same applies to the __call() method for non-static
method calls. Similar to the analysis of field-sensitive magic
methods, our approach is limited by the success of our re-
ceiver analysis. However, during object injection, all classes
are considered so that our analysis of invocation-sensitive
magic methods for gadget chain generation is not limited.

Context-Sensitivity.
Once the correct method is identified and its CFG analysis

is completed, post conditions of the method call are applied
to the callee’s context. In a way similar to functions, the
summary of a method provides return values, sensitive pa-
rameters, and sensitive global variables. If a taint analysis
of a sensitive sink within a method results in an unresolved
PropertyFetch symbol and the receiver’s name is either
$this, a parameter’s name, or a global variable’s name, the
symbol is added to the function summary as sensitive prop-
erty. When the method is called, the sensitive parameters,
sensitive globals, and sensitive properties are adjusted to
the callee’s arguments and a new taint analysis is invoked
from the callee’s context. Furthermore, the object and prop-
write cache is propagated from the function summary to the
callee’s basic block. However, objects are only propagated
if their receiver is a global variable or a return value of the
method. Other objects are deleted from the cache and their
destructor is invoked.

Property writes are applied to global receivers as well as to
receivers that were passed by parameter. The receiver name
is adjusted to the arguments of the method call. Property
writes to the receiver $this are applied to the receiver of
the method call.

3.4 Case Study: POI Detection in Contao CMS
We now discuss a POI vulnerability in Contao CMS to

demonstrate the complexity of real-world OOP code and to
illustrate our novel approach of analyzing OOP code. The
affected code of Contao CMS is given in Listings 4–6.

1 class PagePicker extends Backend {
2 public function run() {
3 if ($_POST && Environment::get(’isAjaxRequest’)) {
4 $this->objAjax = new Ajax(Input::post(’action’));
5 }
6 ...
7 if ($_POST && Environment::get(’isAjaxRequest’)) {
8 $this->objAjax->execPostActions($objDca);
9 }

10 }
11 }
12 $objPagePicker = new PagePicker();
13 $objPagePicker->run();

Listing 4: The method run() of the class PagePicker.

Our analysis begins in line 12 of Listing 4, where a new
Object symbol is created and indexed in the block summary
under the name objPagePicker. We neglect the constructor
analysis. In the next line, the method run() is called. Its
class is determined from the recently indexed Object sym-
bol. Our analysis continues intra-procedurally in the first
basic block of the method run() in line 4. Here, a new
object of the class Ajax is instantiated and assigned to the
property $this->objAjax. Again, we omit the construc-
tor analysis. The receiver $this is unknown at that time.
Thus, we store the new object into a PropWrite symbol.
It assigns the Object symbol Ajax to the property objAjax

of the receiver this. The PropWrite symbol is stored in
the propwrite cache and propagated to each further basic
block within the method run(). Consequently, in line 8, the
receiver $this->objAjax of the call execPostActions() is
resolved to the Ajax object from the propwrite cache. After
this call, the analysis of run() terminates and the property
write to objAjax is applied to the receiver $objPagePicker.

1 class Ajax extends Backend {
2 public function execPostActions(DataContainer $dc) {
3 if ($dc instanceof DC_Table) {
4 echo $dc->editAll($this->ajaxId, $id);
5 }

Listing 5: The method execPostActions() of the class Ajax.

In Listing 5, the executed method execPostActions() is
shown. Due to our context-insensitive intra-procedural anal-
ysis, arguments passed to a method are unknown during
analysis time. Thus, the receiver $dc of the call editAll()
in line 4 is unknown. However, our prototype is able to infer
the class information from the parameter specification (Dat-
aContainer) and more specifically from the if-condition in
line 3 (DC Table). Otherwise, the correct method would
have been found by method fingerprinting. There are two
methods defined with the name editAll(), but only one
accepts two parameters by its specification.

1 class DC_Table {
2 public function editAll($intId=null, $ajaxId=null) {
3 if (Input::post(’FORM_SUBMIT’)) {
4 $session = unserialize(Input::post(’all_fields’));
5 }

Listing 6: The method editAll() of the class DC_Table.

Listing 6 shows the called method editAll() of the class
DC_Table. It contains the actual POI vulnerability in line 4.
Here, user input is fetched from the static class Input and
is passed to the sensitive function unserialize().



3.5 POP Chain Generation
Whenever our analysis reports a call to unserialize()

as vulnerable, the return value of the unserialize() call is
an Object symbol with a special POI flag set to true. If
the return value of this unserialize() call is assigned to a
variable, the flagged Object symbol is added to the current
block’s object cache that is propagated through the upcom-
ing basic blocks, as described in the previous section. How-
ever, its flag causes certain different analysis steps regarding
calls to magic methods.

First, all __wakeup() methods of all classes are analyzed
as initial gadgets. If an object-sensitive magic method is in-
voked on a flagged Object symbol, all magic methods of
its type are also analyzed. This applies as well to a field-
sensitive or invocation-sensitive magic method that is in-
voked on a flagged Object symbol as receiver. The inter-
procedural analysis of the magic methods is performed with
an important difference: All sensitive properties of the func-
tion summary immediately report a POP gadget chain be-
cause the attacker has control over the object’s properties.

Furthermore, we limited gadget chains to only severe vul-
nerabilities by deactivating the detection of client-side vul-
nerabilities, such as cross-site scripting and open redirects,
in our prototype implementation. We also omit vulnera-
bilities that are triggered by a context-independent magic
method and cannot be exploited, such as path traversal at-
tacks against file handlers without further processing. An
exemplary POP analysis and report is presented in Sec-
tion 3.6.

Our approach has two remaining challenges. Recall List-
ing 3 where an object is unknown at intra-procedural anal-
ysis time. If we assume that method1() or method2() is a
magic method, we do not know at the time of the intra-
procedural analysis if the object is flagged or not. Thus,
we do not know if all magic methods should be analyzed or
not. We approach this problem by setting a different flag for
each invoked magic method on an unknown receiver in the
function summary. When a method is called with a flagged
object as argument, we can tell from the function summary
during inter-procedural analysis which magic method was
invoked and we trigger its analysis.

A false gadget chain report occurs if a magic method of a
class that is shipped with the project is analyzed, although
the class is not loaded at runtime within the executed code
path. We approach this problem by creating a stack of in-
cluded files [14] during analysis on-the-fly. Before a magic
method is analyzed, the file name of the method’s class is
confirmed in the stack in order to prove its availability. This
routine is ignored if a class autoloader is detected [38].

3.6 Case Study: POP Chain in Contao CMS
We now introduce a previously unreported gadget chain

in Contao CMS leading to an arbitrary file delete vulner-
ability. The chain is invoked through the __destruct()

method of the class Swift_Mime_SimpleEntity that is avail-
able through an autoloader. This initial gadget is shown in
Listing 7 and it is automatically analyzed, when the flagged
Object symbol of a POI is removed from the object cache.
In line 3, our prototype invokes the analysis of all available
clearAll() methods within the application’s code base be-
cause the receiver $this->_cache is unknown. It can be ar-
bitrarily specified during object injection and point to any
clearAll() method.

1 class Swift_Mime_SimpleEntity {
2 public function __destruct() {
3 $this->_cache->clearAll();
4 }

Listing 7: Initial POP gadget in Contao CMS.

There are four clearAll() methods available in the code
base. While three of them are harmless, the one in the class
Swift_KeyCache_Disk triggers another gadget. As shown in
Listing 8, in line 3, it calls the function clearKey(). The
receiver of this call is the reserved variable $this. Thus,
only methods within the same class or its class hierarchy
are considered and the method defined in line 5 is the only
candidate.

1 class Swift_KeyCache_Disk {
2 public function clearAll()
3 $this->clearKey();
4 }
5 public function clearKey()
6 unlink($this->_path);
7 }

Listing 8: Final POP gadget leading to arbitrary file delete.

Here, the property _path is used in the sensitive built-
in function unlink() that deletes a file. Our prototype
transfers the sensitive property _path to the receiver $this-
>_cache in the __destruct() method, where it issues a vul-
nerability report as shown in Listing 9. The POP chain
report is then attached to the POI vulnerability report.

Unserialize() to File Delete (unlink)
Swift_Mime_SimpleEntity::__destruct()
Swift_Mime_SimpleEntity->_cache = Swift_KeyCache_Disk
unlink(Swift_KeyCache_Disk->_path)

Listing 9: Generated POP chain report of our prototype.

4. EVALUATION
We implemented a prototype of the approach introduced

in the previous section as an extension of our static code
analysis framework RIPS [6]. To evaluate its effectiveness,
we examined the CVE database regarding PHP object injec-
tion vulnerabilities in modern PHP applications [26]. Out
of the CVE entries published in the years 2013 and 2014, we
chose applications according to the following criteria:

• The vulnerable software version is still available for
download so that we can replicate the vulnerability.

• The application is non-trivial (i.e., has more than 40K
LOC) and is primarily written in object-oriented code.

• The affected application is exploitable as it is. For ex-
ample, we excluded third-party plugins or framework
components that require an implementation.

We selected nine CVE entries matching our criteria and
also included Piwik as the first reported software with a
POI vulnerability. The list of selected applications is given
in Table 1. Our selection includes some of the most popular
PHP applications on the Web [42].

Approximately, each of our selected application consists
of 700 PHP files and about 170K lines of PHP code (LOC).
The analysis was performed on a machine with an Intel i7-
2600 CPU @ 3.40 GHz and 16 GB RAM. On average, our



Table 1: Evaluation results for selected applications recently affected by a POI vulnerability. The number of POI vulnerabilities
and chains detected by our prototype are compared to the number of previously known issues. Highlighted numbers indicate
cases were our prototype detected novel POI vulnerabilites or POP chains.

CVE Number Software Version Files LOC Time [s] Mem [MB] POI Gadgets Chains
CVE-2014-2294 Open Web Analytics 1.5.6 463 82 013 155 475 0/1 24 9/0
CVE-2014-1860 Contao CMS 3.2.4 578 202 993 298 1 264 19/3 136 14/3
CVE-2014-0334 CMS Made Simple 1.11.9 692 135 478 567 922 1/1 41 1/0
CVE-2013-7034 LiveZilla 5.1.2.0 103 42 753 151 342 2/1 21 0/0
CVE-2013-4338 Wordpress 3.5.1 425 190 800 1 138 7 640 0/1 41 0/0
CVE-2013-3528 Vanilla Forums 2.0.18.5 597 123 465 951 6 471 2/2 14 0/1
CVE-2013-2225 GLPI 0.83.9 1 025 347 682 676 1 632 15/1 77 0/0
CVE-2013-1465 CubeCart 5.2.0 846 141 404 447 1 483 1/1 47 3/1
CVE-2013-1453 Joomla 3.0.2 1 592 289 207 338 1 251 2/1 73 5/2
CVE-2009-4137 Piwik 0.4.5 750 174 314 87 476 1/1 111 4/3
Total 7 071 1 730 109 4 808 21 956 43/13 585 36/10

prototype implementation required 8 minutes and about 2
GB of memory to perform the POI and POP analysis for a
given application. We believe that our efficient concept of
using block and function summaries also applies to larger
code bases and that our results clearly outperform manual
code analysis.

In the following, we present an evaluation of the reported
PHP object injection vulnerabilities for each application (see
Section 4.1). Then, we study how many gadgets are avail-
able in each application (see Section 4.2) and how many
gadget chains our prototype was able to connect to a new
vulnerability (see Section 4.3).

In total, we were able to find 30 new vulnerabilities and
28 previously undocumented chains. Overall, our evaluation
results show that two POI vulnerabilities and two known
chains were missed by our current prototype implementa-
tion. Furthermore, false positives occurred only during the
chain detection in one application. We also discuss the rea-
sons for these false negatives and false positives throughout
this section.

4.1 POI Detection in OOP Code
As a first step, we verified if our prototype detects the POI

vulnerabilities described in the CVE entries. We compare
the number of reported POI vulnerabilities by our proto-
type to the number of described vulnerabilities in each CVE
in the column POI of Table 1. For 8 out of 10 vulnerable
applications, at least one POI was detected. For four ap-
plications, our prototype even found at least one novel POI
vulnerabilities that is not included in the CVE. We believe
that these vulnerabilities were missed during manual analy-
sis. Our prototype reported no false POI vulnerabilities.

The novel POI vulnerabilities are fixed in the latest Live-
Zilla 5.2.0.1, Contao CMS 3.2.9 and GLPI 0.84.5 by replac-
ing calls to unserialize() with json_decode(), or by san-
itizing user input. However, the POI in CMS Made Simple
was not fixed in the latest release yet, because no chain was
found. Our prototype detected a novel gadget chain to delete
arbitrary files and we reported the issue to the developers.
Our novel POI in Joomla also exists in the latest version
3.3.0 and we reported the issue as well.

The POI vulnerability in Open Web Analytics and Word-
press was not detected by our prototype. The root cause for
the false negative in Open Web Analytics is the insufficient
analysis of reflection, which is an unsolved problem in the
field of static analysis [4, 14,22].

1 class owa_coreAPI {
2 public static function classFactory($module, $class) {
3 return owa_lib::factory(OWA_BASE_DIR.’/modules/’.

$module.’/classes/’, $class);
4 }
5 public static function getRequestParam($name) {
6 $service = owa_coreAPI::classFactory(’base’, ’service’)

;
7 return $service->request->getParam($name);
8 }

Listing 10: Dynamic class factory in Open Web Analytics.

The simplified code is shown in Listing 10. In Open Web
Analytics, every access to user input is performed via the
static method getRequestParam() defined in line 5. This
method fetches a new object through the method class-

Factory() in line 6 and calls the method getParam() on
the request property as receiver. Because the method fac-

tory() used in classFactory() internally uses reflection, no
knowledge about the object assigned to $service in line 6
is available to our prototype. The prototype can still fin-
gerprint the method getParam(), but this method accesses
properties of the object assigned to the property request.
Its properties are filled during the dynamic object construc-
tion in the factory. We plan to improve the analysis of dy-
namic OOP code in the future.

The false negative in Wordpress is based on second-order
data flow [7]: metadata about a user is stored in a database
and later loaded into a cache before it is deserialized. The
database queries are constructed dynamically and cannot
be reconstructed completely by our prototype in order to
recognize the data flow.

4.2 Available POP Gadgets
We let our prototype report all declared non-empty magic

methods in our selected applications to establish a ground
truth. On average, there are about 59 potential initial gad-
gets available per application. The different amounts of
magic methods are listed in Table 2. In our evaluation,
the most common magic methods are __set() and __get()

methods. However, since they implement the simple logic
for missing getter and setter methods, none of them was ex-
ploitable. Among the available gadgets, the __destruct()

method is also frequently present. It provides the best chance
for abusable code because it is context-independent. The
context-dependent method __toString() is defined often,
but is supposed to return a string representation of the ob-
ject which does not yield a high chance of abusable PHP



Table 2: Gadget distribution within our selected applications. Highlighted numbers indicate initial gadgets of chains.
Software set get toString destruct isset call wakeup unset clone set state callStatic total
Contao CMS 47 32 16 17 12 3 4 2 2 0 1 136
Piwik 11 19 23 21 9 9 8 8 3 0 0 111
GLPI 43 23 5 1 1 0 0 0 0 4 0 77
Joomla 4 11 30 15 1 4 4 1 3 0 0 73
CubeCart 8 11 4 18 1 3 0 1 1 0 0 47
Wordpress 4 6 13 8 5 2 0 2 0 0 1 41
CMS Simple 8 15 7 3 2 3 1 0 2 0 0 41
OWA 2 2 3 15 2 0 0 0 0 0 0 24
LiveZilla 1 6 4 5 1 3 0 1 0 0 0 21
Vanilla 3 3 4 1 0 3 0 0 0 0 0 14
Total 131 128 109 104 34 30 17 15 11 4 2 585

Table 3: Distribution of different vulnerability types in our
detected POP gadget chains.

Software FD FC FM SQLi LFI XXE
OWA 2 2 1 3 1 -
Contao 6 5 3 - - -
CMS Simple 1 - - - - -
CubeCart 1 - - 2 - -
Joomla 1 - 2 1 1 -
Piwik - 2 1 - - 1
Total 11 9 7 6 2 1

code. The least frequent magic methods are callStatic()

and __invoke() which we did not find in any of our selected
applications. Based on the low number of gadgets, we ex-
pected the POI in Vanilla Forums (14), LiveZilla (21), and
Open Web Analytics (24) to be less likely exploitable com-
pared to, for example, Contao CMS (136) or Piwik (111).

Note that the number of available gadgets does not sig-
nificantly influence the overall performance. That is, first of
all, due to the fact that the code size of magic methods is
often rather small. Furthermore, some of them are already
included in our normal OOP analysis. Second, all further
gadgets in a chain are user-defined methods. These are ana-
lyzed for POI vulnerabilities by our prototype. Because the
analysis results are stored in the method’s summary, they
can be re-used when building a chain with little effort.

4.3 Detected POP Gadget Chains
Next, we evaluated the reported POP gadget chains of

our prototype. For Wordpress and Open Web Analytics, we
simplified the POI vulnerability so that our prototype was
capable of detecting the vulnerability after which we can
include the applications in our gadget chain evaluation.

The total number of exploitable gadget chains reported
by our prototype is compared to the known gadget chains
from security advisories in the column Chains in Table 1.
In total, 36 exploitable gadget chains were reported. Our
prototype successfully detected a gadget chain in 6 out of
10 applications, whereas 28 gadget chains were previously
unknown. Starting from the initial gadget to the sensitive
sink, the length of detected gadget chains ranges from 1
up to 8 gadgets with an average chain length of 3 gadgets.
Table 2 highlights the magic methods used as an initial gad-
get with a bold number. The most abused magic method
was __destruct(), used by 86% of the gadget chains. Only
four gadget chains initially exploited __toString() and one
chain exploited __wakeup().

The number of different vulnerability types detected in
each application through POP is listed in Table 3. The
most prominent vulnerability types are file delete (FD), file
create (FC), and file modification (FM) vulnerabilities. Fur-
thermore, SQL injection (SQLi) and local file inclusion (LFI)
vulnerabilities were detected, as well as one XML external
entity injection (XXE).

Surprisingly, 9 chains were found in Open Web Analyt-
ics, although only 24 initial gadgets are available. However,
one call to a method with a frequently used name is enough
to jump to a large portion of the application’s code. Due
to one dynamic class invocation (refer to Section 4.1) also
10 false positives occurred. For LiveZilla, Wordpress, and
GLPI, no gadget chain was detected by our tool. However,
since no gadget chain is publicly documented, we assume
that the POI vulnerability is not exploitable with the appli-
cation’s core code. A false negative occurred in Piwik and
in Vanilla Forums. Here, our prototype analyzed dynamic
OOP features imprecisely.

5. RELATED WORK
Code reuse attacks and OOP analysis were extensively

studied over the last years. However, both techniques have
not been applied to PHP-based web applications before. In
this section, we review related work of both fields.

5.1 Code Reuse Techniques
The idea of reusing existing code instead of injecting shell-

code goes back to Solar Designer, who was the first to pub-
licly documented such an attack to bypass a non-executable
stack [32]. The idea is that the adversary constructs a
fake call stack which contains the necessary parameters and
meta-information (i.e., a return address that points to a li-
brary function). After a successful exploit, the vulnerable
function attempts to return, but the fake call stack leads to
a diversion of the control flow. While an adversary can re-
turn to an arbitrary location, she typically returns to one of
the functions provided by the C standard library and thus
such attacks are called return-to-libc.

This basic idea was extended in the following years, lead-
ing to the technique nowadays referred to as return-oriented
programming (ROP) [21, 27]. Instead of reusing complete
functions, an adversary can also chain small code fragments
and build a malicious payload. There are ROP compil-
ers [16,29] capable of automatically converting a given piece
of code into an application-specific ROP chain and Snow
et al. demonstrated how such chains can be built on-the-
fly [31]. Another technique closely related to ROP leverages



gadgets not ending in return instructions but some kind of
indirect jumps [3, 5].

Back in 2009/2010, Esser gave two presentation in which
he described the idea of applying code reuse attacks in the
context of PHP-based web applications [9, 10]. He demon-
strated the practical feasibility of such an approach and
coined the term property-oriented programming (POP). We
build upon this work and propose a static analysis approach
to detect PHP object injection vulnerabilities and POP gad-
get chains in an automated way.

5.2 Analysis of Web Applications
Due to the practical importance of PHP-based web appli-

cations, a large number of techniques to analyze such ap-
plications for potential (injection) vulnerabilities were de-
veloped (e.g., [1, 6, 7, 15, 18, 20, 33, 44–46]). Our static code
analysis is based on block and function summaries, a concept
first introduced by Xie and Aiken [46]. Previously, we ex-
tended it for precise analysis of PHP built-in features [6] and
for second-order vulnerability detection [7]. In this work, we
extended our procedural data flow analysis with support for
relevant object-oriented features for POI detection. To the
best of our knowledge, none of the existing approaches is
able to analyze object-oriented PHP code.

The challenges we address to perform an efficient OOP
analysis on large applications is a research topic addressed
for other kinds of programming languages. A broad overview
on different approaches to perform object-sensitivity analy-
sis was performed by Smaragdakis et al. [30]. They introduce
type-sensitive analysis as a more scalable solution that picks
its context based on types instead of objects. Although their
approach looks promising, it is not applicable to a weakly-
typed language such as PHP.

Several static code analysis approaches have been pro-
posed to perform points-to analysis for the weakly-typed
JavaScript language [2, 11,12,17,35]. Similar work was also
performed for the Java language [23, 25, 40]. For example,
Livshits and Lam proposed a static analysis approach to de-
tect security vulnerabilities in Java applications [23]. Tripp
et al. designed static taint analysis for Java and imple-
mented their approach in the TAJ system [40]. In general,
these approaches cannot be adopted to the PHP language
due to missing type information in PHP.

6. CONCLUSION AND FUTURE WORK
Code reuse attacks are not only a threat for memory cor-

ruption vulnerabilities in binary executables, but also for
the web application domain. In this paper, we studied the
nature of PHP object injection vulnerabilities that can be
exploited via property-oriented programming. In such code
reuse attacks, an object with modified properties is injected
into the application. Through PHP’s magic methods, the
control flow is diverted and an adversary can perform mali-
cious computations. We proposed and implemented an au-
tomated approach for efficient gadget chain detection. An
empirical evaluation demonstrates that our method can find
new POI vulnerabilities and different kinds of gadget chains.

Our prototype models only relevant OOP features for POP
detection. False positives and negatives can occur by impre-
cise handling of dynamic OOP features [14]. Future work
will extend the support of OOP features and address the
challenge of framework analysis [24,34].
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M., and Tip, F. Correlation Tracking for Points-to
Analysis of JavaScript. In ECOOP
2012–Object-Oriented Programming. Springer, 2012,
pp. 435–458.

[36] Sundaresan, V., Hendren, L., Razafimahefa, C.,
Vallée-Rai, R., Lam, P., Gagnon, E., and Godin,
C. Practical Virtual Method Call Resolution for Java.
ACM SIGPLAN Notices 35, 10 (2000), 264–280.

[37] Szekeres, L., Payer, M., Wei, T., and Song, D.
SoK: Eternal War in Memory. In IEEE Symposium on
Security and Privacy (2013).

[38] The PHP Group. PHP: Autoloading Classes. http:
//php.net/manual/language.oop5.autoload.php, as
of May 2014.

[39] The PHP Group. PHP: Magic Methods.
http://php.net/manual/language.oop5.magic.php,
as of May 2014.

[40] Tripp, O., Pistoia, M., Fink, S. J., Sridharan,
M., and Weisman, O. TAJ: Effective Taint Analysis
of Web Applications. ACM Sigplan Notices 44, 6
(2009), 87–97.

[41] van der Veen, V., Dutt-Sharma, N., Cavallaro,
L., and Bos, H. Memory Errors: The Past, the
Present, and the Future. In Symposium on Recent
Advances in Intrusion Detection (RAID) (2012).

[42] W3Techs. Usage of Content Management Systems
for Websites. http://w3techs.com/technologies/
overview/content_management/all, as of May 2014.

[43] W3Techs. Usage of Server-side Programming
Languages for Websites. http://w3techs.com/
technologies/overview/programming_language/all,
as of May 2014.

[44] Wasserman, G., and Su, Z. Static Detection of
Cross-Site Scripting Vulnerabilities. In International
Conference on Software Engineering (ICSE) (2008).

[45] Wassermann, G., and Su, Z. Sound and Precise
Analysis of Web Applications for Injection
Vulnerabilities. In ACM SIGPLAN Conference on
Programming Language Design and Implementation
(PLDI) (2007).

[46] Xie, Y., and Aiken, A. Static Detection of Security
Vulnerabilities in Scripting Languages. In USENIX
Security Symposium (2006).

http://users.suse.com/~krahmer/no-nx.pdf
http://cve.mitre.org/
http://seclists.org/bugtraq/1997/Aug/63
http://php.net/manual/language.oop5.autoload.php
http://php.net/manual/language.oop5.autoload.php
http://php.net/manual/language.oop5.magic.php
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/content_management/all
http://w3techs.com/technologies/overview/programming_language/all
http://w3techs.com/technologies/overview/programming_language/all

	Introduction
	PHP Object Injection
	Magic Methods in PHP
	Serialization in PHP
	Property Oriented Programming

	Static POP Chain Detection
	High-Level Overview of Taint Analysis
	Data Flow Analysis
	Our Approach to OOP Analysis
	Initialization
	Object-sensitive Analysis
	Field-sensitive Analysis
	Inter-procedural Analysis

	Case Study: POI Detection in Contao CMS
	POP Chain Generation
	Case Study: POP Chain in Contao CMS

	Evaluation
	POI Detection in OOP Code
	Available POP Gadgets
	Detected POP Gadget Chains

	Related Work
	Code Reuse Techniques
	Analysis of Web Applications

	Conclusion and Future Work
	References

